3.8.28 \(\int \frac {\sqrt {a+b x^2+c x^4}}{x^3} \, dx\)

Optimal. Leaf size=112 \[ -\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a}}+\frac {1}{2} \sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1114, 732, 843, 621, 206, 724} \begin {gather*} -\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a}}+\frac {1}{2} \sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/x^3,x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*x^2) - (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[a])
+ (Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/2

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^2+c x^4}}{x^3} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}+\frac {1}{4} \operatorname {Subst}\left (\int \frac {b+2 c x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}+\frac {1}{4} b \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )+\frac {1}{2} c \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {1}{2} b \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )+c \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a}}+\frac {1}{2} \sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 112, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a}}+\frac {1}{2} \sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/x^3,x]

[Out]

-1/2*Sqrt[a + b*x^2 + c*x^4]/x^2 - (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[a])
+ (Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/2

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.22, size = 114, normalized size = 1.02 \begin {gather*} -\frac {\sqrt {a+b x^2+c x^4}}{2 x^2}-\frac {1}{2} \sqrt {c} \log \left (-2 \sqrt {c} \sqrt {a+b x^2+c x^4}+b+2 c x^2\right )+\frac {b \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}-\frac {\sqrt {a+b x^2+c x^4}}{\sqrt {a}}\right )}{2 \sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x^2 + c*x^4]/x^3,x]

[Out]

-1/2*Sqrt[a + b*x^2 + c*x^4]/x^2 + (b*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a] - Sqrt[a + b*x^2 + c*x^4]/Sqrt[a]])/(2*Sqr
t[a]) - (Sqrt[c]*Log[b + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4]])/2

________________________________________________________________________________________

fricas [A]  time = 1.08, size = 601, normalized size = 5.37 \begin {gather*} \left [\frac {2 \, a \sqrt {c} x^{2} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) + \sqrt {a} b x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) - 4 \, \sqrt {c x^{4} + b x^{2} + a} a}{8 \, a x^{2}}, -\frac {4 \, a \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) - \sqrt {a} b x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) + 4 \, \sqrt {c x^{4} + b x^{2} + a} a}{8 \, a x^{2}}, \frac {\sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) + a \sqrt {c} x^{2} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) - 2 \, \sqrt {c x^{4} + b x^{2} + a} a}{4 \, a x^{2}}, \frac {\sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) - 2 \, a \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) - 2 \, \sqrt {c x^{4} + b x^{2} + a} a}{4 \, a x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/8*(2*a*sqrt(c)*x^2*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a
*c) + sqrt(a)*b*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*
a^2)/x^4) - 4*sqrt(c*x^4 + b*x^2 + a)*a)/(a*x^2), -1/8*(4*a*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2
*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) - sqrt(a)*b*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c
*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) + 4*sqrt(c*x^4 + b*x^2 + a)*a)/(a*x^2), 1/4*(sqrt(-a)*b*
x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + a*sqrt(c)*x^2*log(-
8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) - 2*sqrt(c*x^4 + b*x^2
+ a)*a)/(a*x^2), 1/4*(sqrt(-a)*b*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*
x^2 + a^2)) - 2*a*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 +
a*c)) - 2*sqrt(c*x^4 + b*x^2 + a)*a)/(a*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.29, size = 148, normalized size = 1.32 \begin {gather*} \frac {b \arctan \left (-\frac {\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}}{\sqrt {-a}}\right )}{2 \, \sqrt {-a}} - \frac {1}{2} \, \sqrt {c} \log \left ({\left | -2 \, {\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} \sqrt {c} - b \right |}\right ) + \frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} b + 2 \, a \sqrt {c}}{2 \, {\left ({\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )}^{2} - a\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3,x, algorithm="giac")

[Out]

1/2*b*arctan(-(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))/sqrt(-a))/sqrt(-a) - 1/2*sqrt(c)*log(abs(-2*(sqrt(c)*x^2
 - sqrt(c*x^4 + b*x^2 + a))*sqrt(c) - b)) + 1/2*((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*b + 2*a*sqrt(c))/((sq
rt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))^2 - a)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 140, normalized size = 1.25 \begin {gather*} \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, c \,x^{2}}{2 a}-\frac {b \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{4 \sqrt {a}}+\frac {\sqrt {c}\, \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2}+\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, b}{2 a}-\frac {\left (c \,x^{4}+b \,x^{2}+a \right )^{\frac {3}{2}}}{2 a \,x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/x^3,x)

[Out]

-1/2/a/x^2*(c*x^4+b*x^2+a)^(3/2)+1/2*b/a*(c*x^4+b*x^2+a)^(1/2)-1/4*b/a^(1/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(
1/2)*a^(1/2))/x^2)+1/2*c/a*(c*x^4+b*x^2+a)^(1/2)*x^2+1/2*c^(1/2)*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2
))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 4.55, size = 91, normalized size = 0.81 \begin {gather*} \frac {\sqrt {c}\,\ln \left (\sqrt {c\,x^4+b\,x^2+a}+\frac {c\,x^2+\frac {b}{2}}{\sqrt {c}}\right )}{2}-\frac {\sqrt {c\,x^4+b\,x^2+a}}{2\,x^2}-\frac {b\,\ln \left (\frac {b}{2}+\frac {a}{x^2}+\frac {\sqrt {a}\,\sqrt {c\,x^4+b\,x^2+a}}{x^2}\right )}{4\,\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^(1/2)/x^3,x)

[Out]

(c^(1/2)*log((a + b*x^2 + c*x^4)^(1/2) + (b/2 + c*x^2)/c^(1/2)))/2 - (a + b*x^2 + c*x^4)^(1/2)/(2*x^2) - (b*lo
g(b/2 + a/x^2 + (a^(1/2)*(a + b*x^2 + c*x^4)^(1/2))/x^2))/(4*a^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x^{2} + c x^{4}}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x**3,x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/x**3, x)

________________________________________________________________________________________